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A METHOD FOR SOLVING THE NONSIMILAR LAMINAR
BOUNDARY-LAYER EQUATIONS INCLUDING
FOREIGN GAS INJECTION
By Joseph G. Marfin and Yvonne S. Sheaffer

Ames Research Center
SUMMARY

A numerical method for solving the nonsimilar boundary-layer equations,
including binary gas injection, is developed for nonreacting gases. The con-
tinuity, momentum, energy, and species-concentration equations and boundary
conditions are reduced to a set of linear algebraic equations in terms of the
dependent variables only by appropriate application of implicit finite differ-
ence expressions, To solve the equations, profiles of the unknowns at the
initial station are specified, together with certain boundary conditions along
the body surface and boundary-layer edge. The initial profiles are obtained
through solution, by the same method, employing the similarity form of the con-
servation equations that apply exactly at the starting points for the problems
considered., :

Comparisons of the present solutions with exact similarity solutions for
air and helium injection are presented to demonstrate the accuracy of the
method for evaluating the dependent variables along the initial data line.
Comparisons of the present solutions with nonsimilar solutions obtained from
other numerical methods and comparisons with experimental data for air, argon,
and helium injection are presented to evaluate the accuracy and advantages of
the method.

INTRODUCTION

At the inception of this investigation, wind-tunnel tests were planned
that involved foreign gas injection through a porous model. To meet the
requirements for data correlations, it was necessary to calculate various
boundary-layer parameters that required solutions to the nonsimilar boundary-
layer equations including foreign gas injection. A computer program utilizing
the Smith-Clutter approach was available for solving the nonsimilar equations
(see, e.g., refs. 1 and 2). While experience has shown this program was use-
ful for studying the effects of pressure gradient without injection (see
refs. 3 and 4), computer time and convergence limitations made it impractical
for the present application. Therefore, a finite difference method for
solving the nonsimilar equations including binary gas injection was developed
to circumvent these limitations.



Finite difference schemes can be categorized as explicit or implicit.
The explicit schemes are conditionally stable; for most applications, the Ax
step size becomes impractically small and resulting computing times exces-
sively long (see ref. 5)., The implicit schemes, on the other hand, are
usually unconditionally stable. Fligge-Lotz and Blottner (ref. 6) took advan-
tage of this fact to demonstrate the utility and speed of an implicit scheme
for solving the boundary-layer equations. Blottner later applied this tech-
nique (ref. 7) to solve the complicated nonequilibrium boundary-layer problem.
Although the method described in reference 6 has many advantages, it was not
applied extensively until recently (e.g., refs. 8 and 9).

The present work uses the basic implicit scheme described in reference 6,
but here the basic equations are transformed to new coordinates with finite
boundaries by means of a transformation described in reference 10. The asymp-
totic nature of the transformation allows the choice of a constant Ay step
size within finite limits (say, between 0 and 1), thus eliminating the neces-
sity of searching for the effective boundary-layer edge through additional
iteration. Subsequent to the coordinate transformation, the equations are put
in finite difference form so that the unknowns appear linearly. The resulting
set of linear algebraic equations and a stream-function equation are solved on
a digital computer after specifying streamwise boundary conditions along the
body surface and boundary-layer edge and profiles of the unknowns at the
initial streamwise location, The initial profiles are obtained by the same
method employing the similarity form of the equations that apply exactly at
the streamwise starting locations for the problems considered.

This report presents the solution method and demonstrates, by example,
its capabilities and accuracy. Although the original application of the

method was specifically directed toward solutions that included binary
injection, the method is applicable to many other boundary-layer problems.

SYMBOLS

A_,B_.C coefficient matrices given in equation (23)

n* n’ n

C mass concentration

Cp frozen specific heat at constant pressure, see equation (18)

C, specific heat at constant volume

En solution vector (column matrix) in equation (23)

b* total displacement thickness with mass addition, see equation (39)
Dio binary diffusion coefficient
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defined by equations (28) and (29)

defined by equation (4)

stream function, IT]&i-dn

dummy variable

edge boundary-condition vector

boundary-condition coefficient matrix

wall boundary-condition vector denoting column matrix
vector denoting column matrix given by equation (28)
weighting factor in transport coefficients, see equation (22)
thermal conductivity

length of nonporous tip

dummy variable

molecular weight

mesh point in x direction

denotes number of mesh points in y direction

mesh point in y direction, n =1,2, . . . , N

coefficient in polynomial expressions for properties, see
equation (15)

pressure

3

Prandtl number, Cp X

heat-transfer rate
dummy variable
universal gas constant

normal distance from axis of symmetry to body surface

dimensionless distance along surface in flow direction £

&1
u

Schmidt number,
pD

i2
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normalized temperature, gL
o

temperature

velocity in streamwise direction

velocity normal to streamwise direction

mole fraction

streamwise distance from tip of body

normal distance from body surface

transformed normal distance defined by equation (7)
stretched normal distance, a(l - y)

scale factor in equation (7)

du
pressure gradient parameter, 28 SUe
ug dg

displacement thickness given by equation (38)

wall boundary conditions on species (eqs. (26) and (30))
transformed normal coordinate (eq. (5))

momentum thickness given by equation (40)

viscosity

transformed streamwise coordinate (eq. (6))

density

vector denoting column matrix for unknowns at (m + 1), see
equation (23)
shear stress defined by equation (33)

Y
ele

dimensionless density-viscosity product, 5

step size in y direction
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Subscripts
mesh points for finite difference scheme (see sketch (b))
boundary-layer-edge value
species i; i = 1 is free stream, i = 2 is injectant
initial value

coefficient number in polynomial for thermodynamic and transport
properties

evaluated at arbitrary length, X = 1
stagnation-point value

nonsimilar value

similar value

partial differentiation with respect to the subscript
wall value

free-stream species

injected species

Superscripts
iteration number

geometric factor; n = 0 is two-dimensional and n = 1 is
axisymmetric

polynomial degree .

ANALYSIS

The nonsimilar, laminar boundary-layer equations are given in this
section, along with the equations for evaluating the thermodynamic and trans-
port properties of the binary gas systems considered. The method of solution,
involving a transformation and a linearization of the boundary-layer equations,
is presented and equations are given for determining shear stress, heat trans-
fer, and other important boundary-layer parameters.



Boundary-Layer Equations

The mass, momentum, energy, and species conservation equations for a
binary gas system in the familiar Levy-Lees variables (e.g., ref. 2) are:

Momentum
(9F ), *+ £F + Blo /o - F?) = 2£(FFg - Fify) (1)
Energy
2
1 ¢ ¢ ¢ue 2 Bue pe
| 5= C,T + T + C - C C, T, + F - =———F
Cp<Pr P T1>n n SCCp (Pl p2> ln n Cpto n Cpto p
= 2g(FTE - Tnfg) (2)

Species (binary system)

$ -
(gg Cln)n + fc1n = 2£<Fclg - Clnf€> (3)
where
u

F=f = — 4
n " g (4)

Ny ue (Y -
n-= L fete JL'dY (5

vZE  J, Pe

£ =" p upro dx 6
§_oetebe (6)

The boundary conditions are

n=20
F=20

T = Tw

= '2E (Cl)w (pv)WScw

Pyt YT

X
- —l—-s_ (pv)wrn dx
V2g " X1

Hh
~
[=]
~

i



T + Te
c, ~ 1

The boundary conditions at n = 0 are based on the assumption that the net
mass flow of the free-stream gas at the wall is zero (e.g., ref. 2).

Transformation to Finite Coordinates

It is convenient from a computational viewpoint to transform the above
equations to a new system of coordinates wherein the indefinite limit of inte-
gration on n 1is replaced by a definite limit (e.g., ref. 10). Let

y =1- e 0N (7)

For a system of finite-difference equations with a fixed number of y nodal
points and a fixed interval Ay, o 1is used as a scaling factor to provide an
optimum distribution of nodal points across the boundary layer. A certain
amount of experience is required to achieve the optimum results, as will be
discussed subsequently.

The following transformation identities result
()=l -0,
(dpg = 02 - NIQ -9, - ()] (8)

Employing these transformation identities, equations (1) through (4)
become

Momentum

o?(1 - ¥)20,Fy + ¢a®(1 - ¥)?Fyy - ¢a®(1 - Y)Fy, + a(l - y)£F, + B(pg/p - F?)

= 2¢[FFy - a(l - y)F £] 9)
Energy
L2 y2(BR) 1+ £ 62 - LA - NT,, - T,] % 6EQ - 9T
CP Pr/y'y = Pr Yy y y
2 2
Bug” p u
¢ 2 2 e __e_ e 2 - 2 2
+ —— [C -C a(l - y)“C, T, - = + as(1 y)“F
5eC, ( P, p;) YOy TR o Chto y

= 2£[FT; - a(l - Y)T £]  (10)



Species

a2(l - y32¢, (&) + L o201 - yI2¢, - 24201 - y)C, + of(1 - y)C
1y(Sc>y Sc lyy Sc 1y ly

= 2 [Fcl - a(l - y)C, fg] (11)
3 y
where
Y F
f=Y —F——dy + £ 12
Ty W+ £00) (12)
The boundary conditions become for y = 0
S
F=20
T = Ty
Y2e €y (ov), Sc,
(cl) = -~ (13)
y apwuwuern
: 1 x _
£(0) = - — [ (ov) " dx
2E )
and for y =1
F=1
T = Tg (14)
C, =1

Thermodynamic and Transport Properties
To complete the system of equations, the thermodynamic and transport
properties are expressed as functions of the dependent variables C. and T in

the manner described in reference 2. The properties of the individual gas con-
stituents were expressed as polynomials in terms of temperature; for example,

_ k
cpi = 203 P, T (15)

A similar expression was used for u; and Dj;. Values of the coefficients, Py,



used to obtain C_ , u., and D..

Pi° 1 1]
reference 2, along with a brief description of the assumptions regarding
intermolecular potentials. :

for the gases considered are given in

The thermal conductivity of each constituent was obtained from Eucken's

relation
Ch.
1 Pi
k: = %19 =—= -~ 5)C . 16
i 4<cVi )Vi”1 (16)
where
R
Cy; = Cp, - i (17

Mixture values of the thermodynamic and transport properties were
obtained from the equations:

C,=C, +C (c -C ) (18)
1
PT P, P, TP,
p M
= RT [M 1(\:41 7 ] (19)
RT M, + C, (M, - M)

Mixture values of the transport properties were obtained from the approximate
combining equations taken from reference 11:

k k
X2 Xy
1 + 1.065K12 > 1 + 1.065K21
Uy Ho
u = + (21)
X X
1+ K K% 1+ Ky gi
where
VAT R GOV D i
Ky, = [1 1/¥o /M) "] (22)

23/2 (1 + M1/M2)1/2

and where K;; 1is obtained from equation (22) with subscripts 1 and 2
interchanged.



Method of Solution

To obtain a numerical solution, equations (9) through (11) are
approximated by a set of implicit finite difference equations of the Crank-
Nicholson type and the ensuing tridiagonal matrix equations Al = D, solved on
a computer by the algorithm given in reference 12. To use the solution algo-
rithm, the equations must be linearized, values for the unknowns at the
initial streamwise location must be specified along with streamwise boundary
conditions at the wall and the boundary-layer edge. In the subsequent por-
tions of this section, the difference equations, the boundary conditions, and

the solution are discussed.

The mesh-point diagram for the Crank-Nicholson scheme is shown below.
The finite~difference equations used to assure linear equations when marching
from line (m) to (m + 1) are given in appendix A.

N+l ty Substituting the difference equations into the
momentum, energy, and species equations (egqs. (9) -
(11)) results in 3(N - 2) linear equations. In
n matrix equation form, one obtains
Ly Agig_, * Bpon + Cponsr = Dn n=2,3 N-1
n-1 n-n n*n+i1 = +¥n Fly9; o w0 . S0~
n-|
A& (23)
m m+]|
where, for example, the vectors and coefficient
Sketch (a) matrices have the following form
B D; Aj; O 0
wp = [T ] Dp =| D2 Ap =|Az21 A Azs
1
n,m+1 D3 n,m 0 0 Az n,m
oT N,m+1/2 or n,m+1/2

As shown in appendix A, the matrices By and C, are similar in form to Ay,
except By3 = 0. The matrices A,, By, and C,, and the solution vector Dn,

are considered known and are evaluated at (n, m) or (n, m + 1/2) depending on
the iteration described subsequently. Equations for the matrix elements and

vector 5n are given in appendix A.

To complete the system of equations, values of the dependent variables
;n at the two boundaries must be specified. To be consistent with the
solution algorithm in reference 12, these were written as

y=0 (T)1=H(T)2+ﬁ
(24)
y =1 wy = &

10



Special attention was given to the boundary condition on wall concentration to
arrive at a form consistent with equation (24). The condition was obtained
by expressing the concentration at n = 2 in finite difference form as a
Taylor series about n = 1 and retaining three terms.

2
(C1), = C1lty) = CL(0) + by [C1(O)], + 4= [C1(0)],, (25)

The terms [Cl(O)]y and [Cl(O)]yy are obtained from the boundary condition,

equation (13), and equation (11) evaluated at y = 0. After some manipulation,
equation (25) is rewritten as

_ C1(ay)
C;(0) = 1—7T2%&; (26)
where
/EE'SCW(QV)W . Ay? ) Sc,, <¢w > V2E (DV)WSCW
eng = —————— [Ay + 5|1 - '
o (pu) uer? 2 bw \3%y y a(pu) per”

Using equation (26) together with equations (13) and (14), the elements of the
matrix coefficient and vectors in equations (24) become

0 0 0 1
H= |0 0 0 ho=| Ty g =|Te
0 O _ -1 0 n,m+1 1 n,m+1

1 + ENS n,m
or n,m+1/2

Equations (23), together with the boundary conditions, equations (24},
form a set of linear equations which can be solved on a digital computer once
profiles of the dependent variables at an initial streamwise location are
specified. The algorithm for solution, taken from reference 12, is

& = ~Epon,q + J l1<n<N-1 27
n n*n+1 n

where

- -1
En - (Bn - AnEn—l) cn

|
\

n= By -AE VPGB, -AT ) 2snsN-1 (28)

and where

lws]
—

[
el
[vy]

z

]

o

(29)

<
—

n

=gl

[
z

!
ol

11



The computation proceeds with evaluation of equations (28) from the wall
to the boundary-layer edge using matrix elements based on values of the depen-
dent variables and appropriate derivatives evaluated at m. Values of the
dependent variable &, at (m + 1) are determined in reverse order using equa-
tions (27) and (29). New values of the stream function f are obtained by
integrating equation (12). Values of the streamwise derivatives of f are
redetermined and the new values for f and ﬁn are averaged over the inter-
val with corresponding values at m to form new matrix elements at
(n, m + 1/2). The solution was iterated until

v+l v
:[F(O)]y | [f(O)]y
[F(0)1y"
(For all computations made thus far,” this criterion was sufficient to assure
convergence of temperature and concentration profiles.)

< 0.0005

To start the solutions, values of the dependent variables &, and the
stream function f at the initial station &g, must be specified. From an
appropriate starting point these values can be obtained by solving the simi-
larity form of the boundary-layer equations obtained by setting the right-hand
sides of equations (9) through (11) to zero (i.e., visualize a stagnation
point, or a point along the surface of a cone with uniform free-stream condi-
tions and £(0) = 0 or £(0) ~ 1/Vx). The similarity form of the equations
were solved by a method analogous to that described above. The mesh-point
diagram and finite difference approximations are given in appendix B. Substi-
tuting the difference equations from appendix B into equations (9) through
{11) with the right-hand sides set to zero also results in 3(N - 2) linear
equations of the form given by equation (23). The equations for the coeffi-
cient matrix elements and vector D, are given in appendix B. The boundary
conditions and solution algorithm remain unchanged, except that the term
eys in the concentration boundary condition becomes

Y2E Sc. (pVv) Av2 Sc (¢ Sc
SRS ) o

n
a(pu)wuer w y
and the boundary condition on the stream function becomes

(ev),, V2E
£00) = - ——— (31)

(ou) JueT
The similarity solution is started by assuming linear profiles of the depen-
dent variables across the boundary layer to evaluate the matrix elements in
equations (28). New values of the dependent variables are obtained from equa-
tions (27) and (29) and integration of equation (12). The new variables are
then averaged with corresponding values of the variables from the previous
iteration to form new matrix elements for equations (28). The solution was
iterated until

v+1 V)
IF(O)]Y _vff(ol]y < 0.0005
[F(O)]y

12



Boundary-Layer Parameters
In addition to using the solutions of the foregoing boundary-layer
equations to obtain profiles of F, T, and C at each station along a body,
other quantities can be computed as follows:

Skin friction.- The defining equation for wall skin friction is

Ty = My (U (32)

Transforming equation (32) to the present coordinate system gives

- due”ow? (py (33)
% "

w

The derivative (Fy) was obtained by means of a three-point derivative
W

equation and the converged solution for F
|
(Fy)w - '—"'—'2 Ay(—SFw + 4FW+A}’ - FW+2 Ay) (34)

Heat transfer.- The heat transfer to the wall was obtain from

atyok

Ny
qw = -tokw(Ts‘;)w = '—'"/z_é_“——"‘w——e (Ty)w (35)

where (Ty)w was obtained from the converged solution for T in an equation

similar in form to equation (34). At a stagnation point, equation (35)
reduces to

d d
q, = apwkwto‘j;n E—Egérflg-(Ty) (36)

e e W

Displacement and momentum thicknesses.- Certain useful integrals of the
profiles across the boundary layer can also be evaluated. The usual displace-
ment thickness is given by

Ye _
§% = S < - 2Y Vay (37)
0 Pele
In the present coordinate system this equation becomes
13 Yo /o) - F
§* = —2— ve' ) dy (38)
peuern 0‘(1 - Y)

13



where yo is the boundary-layer height at which F = 0,995, It should be
noted that the thickness given by &* 1is not the displacement thickness
required to describe physically the free-s¢ream mass flow entrained in the
boundary layer with injection. To obtain that thickness, as shown in refer-
ence 13, the appropriate expression is

14

X
D*=6*+—LI_(_Q_Y.)_Erndi (39)
rn Pelle

The momentum thickness is given by the equation

Ve pu( u>d§'= V2E yeF(l-F)

1 - —
Pele e peuern ) a(l - y)

dy (40)

RESULTS AND DISCUSSION

o + The foregoing equations were
programmed in Fortran IV for solu-
- . tion on an IBM 7094 computer. The
B ~ method of solution was verified by
'S  —— Ref 14, toble Tio) and ) comparisons with numerical solu-
-0.5196 O Present,N=2i, a=! . .

O <-08 tions obtained from other sources
o 2y ‘ o a=05 and by comparisons with experi-
: mental data. Some examples of
/ these comparisons are given below
A d to illustrate the capabilities and

0

2504 /sec advantages of the method.
1092°R

493°R

350°R Similarity Solutions

f(0)=0 5

»

o

-+ - —«+

w
e

As noted in the analysis
section, a special finite-
difference formulation was used to
solve the similarity form of the
boundary-layer equations. To ver-
ify this approach, a comparison
with exact similarity solutions
was made, Typical examples are
discussed below.

Figure 1 shows a comparison
(a) Velocity profile. with the velocity and temperature
(b) Temperature profile. profiles from reference 14. Pro-
Figure 1.~ Comparison of the present solution f}les’ with and without air injec-
with the solution of Low, reference 14. tion, are shown. (The linear



viscosity law reported in reference 14 was also employed in the present
solutions to eliminate transport property differences.) Results from the pres-
ent method were obtained for several values of the scale factor o using 21
nodal points (N) across the boundary layer. As mentioned previously, the
choice of o determines the spacing of the nodal points across the layer and
the choice has some influence on the solution in the outer portion of the
boundary layer. See, for example, the solution for f£(0) = 0 in figure 1.
Experience has shown values of o < 0.5 are required when injection is being
considered., However, even for a poor choice of «, the profiles and deriva-
tives of velocity and temperature near the wall are accurate enough for most
practical applications. No attempt was made to determine the optimum combina-
tions of o and N for this or any of the following examples.

101~ : —3 —0 A comparison of the present
e ) solution with the similarity solu-
4 velocity Ref 15, table 8a tion from_rgfer?nce.ls for fgr—
81 » O Present, N=21,2=0.5 €ign gas injection is shown in

figure 2. The thermodynamic and
transport properties given in the

Sk analysis section were used for
i g ' the present solutions, and these
or were not exactly the same as
(1-Cy) .
A B\ those reported in reference 15.
' B =0 Velocity, helium-concentration,
. v T R and temperature profiles agree
2P KB . to = 1176°R very well, except for differences
conaglium, 1, = 392°R in the concentration near the
a I N f(0)=-0.2455 wall, The differences were attri-
o I ! e — 0 S T, B —4 buted to the different transport

properties employed in the two
solutions,

Nonsimilar Solutions

The present method was
verified primarily through compar-
isons with solutions using a modi-
fied form of the Smith-Clutter
computer program (see refs. 1 and

n 3). In the Smith-Clutter method,

. . the partial differential equa-
(a) Velocity and concentration. . . .
(b) Temperature. tions are reduced to ordinary dif-
ferential equations in n by
finite differencing derivatives
in the £ direction. The equa-
tions are solved by the so-called ''shooting" technique - that is, as a two-
point boundary-value problem prescribing initial conditions for derivatives
of velocity and temperature at n = 0, and iteratively changing these condi-
tions until the edge conditions are satisfied as n - o,

Figure 2.- Comparison of the present solution
with the solution of Baron, reference 15,

15



1.0 20
- Present, N=2}, ¢=0.5
O Refl
8 1.6
6 1.2+
Iw Ib
4 8
X
R=0.2917 ft
. g Me = 10.4
.2 4 t, = 2200°R
t, =550°R
{a) (b) Pe = 570 Ib/f12
| 1 | ] | | | ]
0 I 2 3 4 o I 2 3 4

(a) Heating.
(b) Shear stress.

Figure 3.- Comparison of nonsimilar solutions for a sphere.

Figure 3 presents an example comparison of predicted heating rates and
wall shear along the surface of a hemisphere. The same values of surface
pressure and boundary-layer-edge velocity and temperature were used as input
to both computer programs. Agreement between the two methods is excellent,
as was the agreement between velocity and temperature profiles at various loca-
tions along the hemisphere. As described in the analysis section, initial pro-
files for the present method were obtained by solving the finite difference
form of equations (9) through (12) at the stagnation point where & = 0. Com-
putations were then made for the full set of equations at 92 locations along
the hemisphere. The Ax step size was constant at a value of 0.005 ft. No
attempt was made to determine the maximum Ax step size to achieve minimum
computing time because such optimization would depend on body geometry and
corresponding boundary-layer-edge conditions and the results would not be gen-
erally applicable to other examples., However, it is interesting to note that
the present solutions required about 0.04 minute per body station versus about
0.7 minute per station for the method of reference 1.

A more stringent example is given in figure 4. Solutions were obtained
for a cone with a sharp solid tip followed by a porous surface with uniform
air injection (see ref. 16). The decrease in skin friction and accompanying
increase in displacement thickness along the cone surface is compared with
corresponding values obtained from the computer programs described in refer-
ences 1 and 16, Boundary-layer-edge conditions and cone pressure were assumed
constant in all programs. The starting profiles for the present solutions
were obtained from the similarity form of equations (9) through (12}, evalu-
ated at x = 0.158 ft and for f(0) = 0. Solutions beyond this location were
obtained from the complete equations with the prescribed value of (pov),. The
Ax step size was 0.00025 ft for the first 21 computing stations and then was
increased to 0,015 ft for the remaining stations. The small initial step size
was chosen to avoid numerical instabilities due to the step change in (pv),,.

16



— Present solution; N=21, a=0.5
O Ref g
O Refl
L2}
Lo
B
%’ %103
K
4l
2
(a) I—vBIowmg surface
o) | |
.0l4 —
B =0
Ue = 4965 fi/sec
1, = 2I00°R
012 t, =520°R
e =I57°R
pe = 11.6 Ib/fi2
(pulp=0.089 slugs /ftZsec
Relie]
.5 370 x10-3
(pulp
008
5"
.006 |- o 1185 x1073
004
002
I—— Blowing surface
] t 1 1 L i L 1 ]
(6] . .2 .3 4 .5 .6 7 .8 .9

x|

, ft
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Figure 4,- Comparison of nonsimilar solutions for uniform air injection on a cone.



For the lowest injection rate, agreement with the other computed solutions is
very good. For the highest injection rate considered (pv)y/(pu)_ = 2.37x1073,
solutions using the "shooting" technique (ref. 1) did not satisfy the deriva-
tive boundary conditions as n +~  for x > 0,2 ft; in addition, the program
would not continue beyond x = 0,325 ft, whereas there was no difficulty in
proceeding further with the present method and that of reference 16. The dif-
ficulty encountered by the '"shooting" technique is typical of those encount-
ered by this method when gradients of the dependent variables near the wall
become small. The distinct advantage of the present method is that values of
the dependent variables, rather than their slopes, are employed to obtain solu-
tions. As a result, no difficulty has been encountered with injection prob-
lems where the skin friction or heat transfer become very small. This
advantage would also be expected when solving problems with adverse pressure
gradient approaching incipient separation. It is not known whether the method
described in reference 16 also has these advantages. In the example above,
the solution from reference 16 failed to converge at x = 0,65 ft (the next
computing station), probably because the Ax step size was too large.

One of the purposes for developing the present finite-difference method
of solution including foreign gas injection was to assist in data correlations
of wind-tunnel experiments. A configuration currently under study is similar
to that used in the previous example; that is, a 5° cone with a solid sharp
tip followed by a uniformly porous conical surface. The predicted effects of
gas injection for this test model are given below and compared with some exper-
imental heat-transfer data taken at Ames Research Center in the 3.5-ft hyper-
sonic wind tunnel {(see ref. 17).

Figure 5 presents the predicted laminar boundary-layer heat transfer
along the porous cone surface for three injectant gases and for several inject-
ant rates. The predictions were obtained assuming uniform boundary-layer-edge
conditions of Mach number, temperature, and pressure, and using the measured
injection rate distribution from reference 17. The symbols represent measure-
ments of the laminar boundary-layer heating rate obtained for each of the
injectant rates, Only laminar boundary-layer heating data are shown in fig-
ure 5. Transition occurred and the heating rates increased downstream of the
locations where these data are plotted. For each injectant gas, increasing
the injectant rate decreased the heat transfer to a negligible value. For the
same injectant rate the amount of heating reduction depended on the injectant
gas molecular weight; compare, for example, the reductions for each injectant
at (pv)w/pmuoo = 1.1x10"3, The agreement between theory and experiment is good,
considering the experimental uncertainties in local injection rates and the
fact that the theory did not account for the changes in boundary-layer-edge
Mach number, temperature, and pressure resulting from displacement effects due
to injection, -The displacement effects are particularly important for the
helium injection tests.

18



A//X /x— B =0 Present solution; N=2I, a=0.5
¥ ug = 4029 ft/sec
L oo \¥ﬁ 5° 1, = 1460°R Data, ref I7

[
574°R

tw

DODOI

£=03I125 ft te = 144°R
pe = 26.1 Ib/ft2
(pu)p=0.192 slugs/ﬂzsec

(a) Air injection.
(b) Argon injection.
(¢) Helium injection.

Figure 5.- Comparison of present solution with heat-transfer data on a sharp 5° porous
cone, reference 17.

CONCLUDING REMARKS

An accurate numerical method was developed for solving the nonsimilar
boundary-layer equations, including binary gas injection. The conservation
equations in the familiar Levy-Lees coordinates were transformed to new coordi-
nates having a finite domain. By the appropriate choice of implicit finite
difference expressions, the governing partial differential equations and
boundary conditions were reduced to a set of linear algebraic equations in
terms of the dependent variables only and a single stream function equation,
Initial values of the dependent variables required to solve the nonsimilar
equations were determined by applying the same method to solve the similarity
form of the boundary-layer equations.

The capabilities and accuracy of the method were demonstrated by
comparison with other numerical solutions and with experimental data. The com-
parisons showed that the present method could be accurately applied to a vari-
ety of examples. The method is ideally suited to solving flow problems where
skin friction and heat transfer become small, as in the case of boundary-layer
injection.
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Additional information regarding the computer program details can be
obtained by contacting the authors.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, July 16, 1969
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The following finite-difference equations were used to reduce the

APPENDIX A

FINITE DIFFERENCE AND MATRIX ELEMENT EQUATIONS

FOR THE NONSIMILAR BOUNDARY-LAYER EQUATIONS

nonsimilar boundary-layer equations to a system of linear algebraic equations.
The appropriate grid system from sketch (b) is reproduced here with redundant
grid notation for convenience in writing the difference equations.

- 4 Ay

P,

S=¢/,

m m+1
Sketch (b)

Ge - Gp
AS

1

(Ge - Gy + Gf - Gq)

S
2(ay)?
Re - Ra
2 Ay
Re - 2Rp + Ry
(ay)?

(Me - Mb)
AS

(Ge - 2Gp + Gy + Gg - 2Gg + Gg)

Gp

1

—E——SZ'[(GC - Gg) Mg - Mg) + (Gf - Gd) (Mc - Ma)l
8 (Ay

1 [(G - Ga)(Gf - Ga)]
4(ay)2

GpGe

(AL)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)
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GMy = Gp {4—}5’- [(M. - M) + (Mg - Md)], (A11)

Equations (A2) through (A4), the Crank-Nicholson formulas, are used to approxi-
mate the unknowns and derivatives of the unknowns. The central difference
equations, (A5) and (A6), are used to approximate derivatives of the proper-
ties., Equations (A7) through (All) were chosen so that the unknowns appear
linearly.

These difference equations are substituted into equations (9) through
(11) to obtain

Momentum:
A11Fd + BllFe + ClIFf = D; (A12)
Energy:
Az2Tq + BpoTe + CooTg + AgiFg + BaiFe + ConFg + Ap3Ciy + C23C1p = Do (A13)
Species:
Az3Cry + B33Cy  + C33Cy, = D3 (A14)
Expressions for the coefficients are presented below. There are 3(N - 2)

equations for N nodal points and these are conveniently expressed by the
matrix equation

Apwn-1 *+ Bpop + Cnwper =Dy n=2,3, ... ,N-1 (A15)
where
(-I)n = T ﬁn = D2
| C
Hn,mey D3 n,m
or n,m+1/2
A;; 0 0 ) Bi; O 0
Ap = | A1 Azx  Aps By =|B21 By O
| 0 0 Assdy n 0 0 Basd ;i m
or n,m+l/2 or n,m+1/2
Cy; O 0 ]
Ch ={C21 Ca2  Cz3
0 0 Cssd
or n,m+1/2
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The matrix elements are given in the following equations, where for conve-
nience, Z replaces the term a(l - y). Also it is to be noted that follow-
ing the first iteration quantities not subscripted with b are evaluated at
(n, m + 1/2) by averaging quantities at n, m with those at (n, m + 1).
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APPENDIX B

FINITE DIFFERENCE AND MATRIX ELEMENT EQUATIONS

FOR THE SIMILAR BOUNDARY-LAYER EQUATIONS

The finite-difference equations used to reduce the similarity boundary-
layer equations to a system of linear algebraic equations are given below.
The grid system is shown in sketch (c¢) with redundant notation for conve-
nience in writing the difference equations. The superscript (v) is understood
to be the iteration number.

n+l ° Ty
n b
n—I| d
Sketch (c¢)
My = 7y e - Mo o
1
My, = Mo - 2Mp + Mp) (B2)
Y e e TR
M2 = Mbv+1Mbv (B3)
Sy = Alyz [Ge - 6" (e - Ma)” + (e - M) " (Ge - 6)°]  (84)
(Gy)2 - (Gpr-”Ga)v(Gc - Gt (B5)

4 Ay?

Substituting the above difference equations into equations (9) through (11)
with the right-hand sides set to zero and approximating f(M)y by fbV(M)y

results in equations of the form given by equations (Al2) to (Al4). The
expressions for matrix elements are

224" 2,V v ooz
Ay = [— Y L Z7¢ L eZe _ °7H ]
2 Ay (ay)2 2 Ay 2 Ay
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